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Abstract

A numerical method for a finite difference approach has been established for the analysis
and control of the fluid field behavior of flow past a cylinder. The discretization of the 2D
Navier-Stokes equations is done over a staggered grid, the convective terms in the momentum
equations are handled using a mixture of central differences and donor-cell discretization, and
the Poisson equation for the pressure is solved through the successive overrelaxation (SOR)
method.

We also study some open-loop and closed-loop control of the flow field by rotating the
cylinder. For the open-loop control design, we mainly make use of the energy method, and
for the feedback design both the energy method and the phase lock-in method are applied.

Keywords: Finite Difference; Flow Control; Vortex Shedding.

Extended Abstract

1 Introduction

Numerical computation is an indispensable tool for control. Computation is needed both for off-
line functions such as simulation, analysis, and synthesis of control systems as well as for on-line

*Paper is submitted to the 33rd AIAA Fluid Dynamics Conference and Exhibit, Orlando, Florida 23 - 26 Jun
2003
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Research, 2002.

7




functions associated with control system implementations in embedded processors. Simulation
is used to extend our capacity to reproduce and forecast physical processes on the computer.
Expensive experiments are increasingly being replaced by computer simulations. Moreover,
simulation enables the examination of processes that cannot be experimentally tested.

Strouhal was the first to study the periodic features produced by the movement of a cylinder
body in air at low Reynolds number {18]. The understanding of the spatiotemporal dynamics of
oscillatory flows has proceeded by successively considering the linearized version of Navier-Stokes
equations by, among others, Joseph [17], Monkewitz, Huerre and Chomaz [21], and Yudovich
[29]. Since the Navier-Stokes equations linearized about a steady-state flow is non-self-adjoint,
the investigation is a difficult problem, and for the solution of the majority of questions it is
necessary to use numerical methods [29].

In this paper, we use the finite difference approach to investigate wake responses under open-
loop and closed-loop control. Simulations for controlling the wake flow by rotating the cylinder
are provided.

2 Problem Description

The flow behavior in general can be described more or less as follows. Let u(t) denote the
velocity field of the wake flow (here u(t) is the symbolic notation for a function of the space
variable £ = (£,£2,£3)). When Re is small (Re < 40), the velocity field is stable and attracts
all of the orbits. In this case the flow is fully laminar. When 40 < Re < 50, steady vortices form
behind the cylinder. Typically, for ¢ — 00, u(t) will converge to a stationary solution

u(t) — u®, as t— oo,
the limit solution depending on the initial condition ug. In this case the flow is still steady.
When Re is grater than approximately 50, a Hopf bifurcation occurs, i.e.
u(t) —p(t) =0 as t— o0, (2.1)

where ¢ is a time-periodic solution of the system. After the Hopf bifurcation has occurred,
the flow never becomes stationary again. In fact it is time periodic. In this case von Kérman
vortices move in the flow direction and new vorticies appear on the downstream face of cylinder
in a seemingly time-periodic manner, namely, vortex shedding.

The system of equations governing the conservation of momentum for fluid flow is known
as Navier-Stokes equations. When combined with conservation of mass, they describes the
general evolution of fluid flow. For a viscous incompressible fluid, the equations are

p(%%—k (u-V)u) ~pAu+Vp=f (2.2)

divu =0, (2.3)

where p > 0 is the constant density of the fluid, v > 0 is the kinematic viscosity, and f represents
volume forces that are applied to the fluid.



Alternatively, equation (2.2) can be considered as the nondimensionalized form of the Navier-
Stokes equations in which case u, p, f are nondimensionalized quantities and the kinematic
viscosity u/p := v is replaced by Re~!, Re representing the Reynolds number

UL

Re ,
v

where U and L are the typical velocity and length used for the nondimensionalization.

In this paper, we only consider the two-dimensional case and rewrite equations (2.2) in
component form. Let u = (u,v), p = pp, and f = p(fs, fy). Then the equations in component
form read as follows:

momentum equations:

ou  dw?) O(w) 1 (0%  Ju\
Gt o T oy Re\a o) T 24)
Oov  9(uv) ow?) 1 (8% 0w\ _
5 | oz dy  Re \ 0x? + o) T 25)

continuity equation:

Ou  Ov
—+—=0. 2.6
Oz + Oy (26)
Let  be the region exterior to a circular disk with radius r. Then the open-loop or closed-loop
control is acting on the circumference:

(u,v) = g(t) on OQ. (2.7

3 Finite Difference Approach

Our numerical calculation is made over a collection of uniformly space discrete grid points. When
central differences are used for the incompressible Navier-Stokes equations, pressure oscillations
can possibly occur if all three unknown functions u, v and p, are evaluated at the same grid
points [2]. There are two ways suggested for fixing the problem. One is to utilize the upwind
differences, and the other is to use a staggered grid. The advantage of using the staggered grid
is that a central difference approach can still be maintained. A staggered grid is illustrated in
Fig.1. The pressures are calculated at the cell center, the horizontal velocities u are evaluated in
the midpoints of the vertical cell edges, and the vertical velocities are computed in the midpoints
of horizontal cell edges. Cell (i, ) occupies the spatial region [(i — 1)dx,dz] x [(j — 1)dy, j0y],
and the corresponding index (i, j) is assigned to the pressure at the cell center as well as to the
u-velocity at the right edge and the v-velocity at the upper edge of this cell. The key feature is
that the pressures and velocities are evaluated at different grid points so that the non-physical
oscillations due to the numerical computation can be avoided.




Staggered Grid

Cellin )y cellgi- 1)

(22

Figure 1: Stagged grid cells.

3.1 Discretization of the spatial derivatives

Let the rectangular region be
Q= [0,a] x [0,b]

on which we introduce a grid. The grid is divided into i, cells of equal size in the z-direction
and jmez cells in the y-direction. We denote

6x=—a—, oy = b

lmaz

JImaz

Then using the central difference scheme, we have

0z?lij (0z)? '
Oup i = 2+ uio (3.9)
Oy? lij (6y)? '
v Vil — 2055 + V15
—| = 2 : : 3.10
0x2lij (8z)2 (3.10)
622) Vi j+1 — 2’0”' + Ui 51
— = 2 ! 2 3.11
oy i 6y)? (3.1
Op Di+1,5 — Di,j
— = — "5/ 3.12
oz li,j oz ( )
Op Dij+1 — Dij
— = 3.13
Oy lij dy (3.13)




3.2 Discretization of convective terms

Considering that the convective terms in the momentum equations can become dominant at high
Reynolds numbers, following [11], we use a mixture of the central differences and the donor-cell

discretization. In each cell (i, 7), we set

ow?)) _ 1 (uza + uz’+1,j>2 _ (W—u + um’)2
Ox lij 0x 2 2
4yl (lui,j + i (Wi — igry) i1y 4 gl (wicry = ui,j)) ,
"oz 2 2 2 2 ’
O(uo))  _ 1 ((vz',j + Vi) (i + i) i1+ Gigng-1) (Wig-1 + uz‘,j))
Ay lij oy 2 2 2 2
Lyl (lvz‘,j +vig| (Wig — iger)  [i-1 +vina-1f (i1 — uz;j)) .
oy 2 2 2 2 ’
Ow) _ L ((Ui,j + i) Wig + Vi) (i1 + Uie1g41) Wio1s + Uz',j))
Oz lij ox 2 2 2 2
L (\Uz’,j + ] (Vig = Yir1y) o1y +uicrgal i1y — vm’)) :
oz 2 2 2 2 ’
d(v?) _ L (Uz',j + Vij+1 )2 B (.vz',j—l + vm’)2
Oy lij oy 2 2

1 (lvz',j +vigr1] (Vig — wig+1)  |vig-1 + vig] Wig-1 — Uz',j))
8y 2 2 2 2 ’

where 7 is a parameter between 0 and 1. During the simulation, the - is chosen to be 0.9.

3.3 Iteration for solving the Poission equation for pressure

We use a forward difference for the time discretization. Thus the momentum equations become:

1 (0%u  0%u\ O(u?) 8(uv) op

(n+1) _ ,,(n) — 22 7 ) - _ 2\ _St=E
u w4+ 8t | = ( 5+ ayZ) i e S A R (3.14)

1 (8%v 0%\ O(uwv) 0(v?) Op

(n+1) _ ,,(n) — =42 ") - — _ stz
oD = o) 4 5t [ = ( - 3y2) e AR (3.15)

Let
F® = o® 46t | 2 Bu Pu) 00 _dw) f " 3.16
- Re \ 022 * Oy? Oz Oy ’ (3.16)
2 2 2 (n)
) _ ym 4 g | L (Ov Qv _Ow) B0

G = ™ 4 ot [ = ( e ay2> ot~ (3.17)
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We then set
Hp(n+1)
u+D) = pn) _ 5 2P = (3.18)
Hpn+1)
o) = g _ 5 %P 5 (3.19)

Making use of the continuity equation, we have the Possion equation for the pressure p("+1) at
time £,41:

Apntl)  g2m+1) 1 (gp()  gain)
A A N ) A ‘ (3.20)
o dy 6t \ Oz oy
Using central difference for the Laplacian operator, we obtain
+1 +1 1 +1 1 +1
pl(';l-l,j) - ng; ) + pf‘f{j) p§3‘+1) ~ 2p1(.nj+ ) + 1”53’—1) (3.21)
L (dy)2 '
(n) (n) (n) (n)
_1(Ei-RL, GH -G (3:22)
ot oz dy

An iterative method, called successive overrelaxation (SOR), is applied to solve the above dis-
cretized equation:

. : 1 .
Py = Pytw| g Al
wer t wyr
[P+ P L Pan RS 1 FY - K", N Gy - ¢l
(0z)? (0y)? ot oz Sy ’

where w € [0,2] is a parameter. The residual is defined to be

i i j i j i (n) (n) (n) (n)
it _ Py — 2085 + ol | Pl - 20l + P 1 (Fz? - Fly; + Gij - Gif}_l)

A (6z)? (6y)? 8t oz by

The iteration is terminated when either a specified number of iterations has been reached or the
norm of the residual is smaller than a specified tolerance. In the simulation, w = 1.7.

3.4 Stability issue

One of common methods to ensure stability of the numerical algorithm and prevent the numerical
solution from generating non-physical oscillations is to set the time step to meet three conditions:

Re( 1 1 \7! Sz Sy
ot < ——(—-—+——) , < — t<—". 3.23
2 (5:13)2 (5:1])2 |umax| |vmaa:| ( )

We follow reference [25] and use an adaptive stepsize control:

. { Re 1 1 \7! 6z &y
0t := 7 min (7 ((61')2 + (6y)2) Tl |Umax|) , (3.24)

where the factor 7 € [0,1] is a safety factor. In the simulation, we choose 7 = 0.5.




4 Simulation with Open-loop Control

The simulations are based on the solution of the following Navier-Stokes equations:

%:— = -Vp—(u-Viu+ év% in Q, (4.25)
divu = 0 in{Q, (4.26)
u = s(z2,—x1)/r  on oA, (4.27)

u = Uy, onI'y (4.28)

u = 0 onTyT;3, (4.29)

where s is the angular speed (possibly time-dependent) of the cylinder, and Uy = (uco,0) is
the free stream velocity.

5 Simulation with Closed-loop Control

It is well-known that the von K4rmén vortex street induces a strong unsteady transverse periodic
force on the cylinder which can lead to cylinder oscillations with large amplitudes. Such oscil-
lations can cause structural damage and structure failure in applications. A means of altering
the wake structure through feedback control in order to reduce or eliminate such vibrations is of
practical importance. One approach is to introduce feedback into the system with one or more
sensors and actuators so that the combined system is stable. Here we study a simple approach.

We assume that we can measure the upstream velocity away from the cylinder. In our
simulations, we use the average of the speeds of three cells (which are about 1.5 units ahead of the
cylinder) to serve as known information. Then we place five sensors evenly on the downstream
semicircle of the cylinder. Let us denote these five sensing velocities as (u;,v;). Let the active
control be

g(t) = Gsin(2n ft)(y, —x)/r on 99 (5.30)

where G is the feedback gain, r is the radius of the cylinder, and f is a selected frequency.
Here the frequency f can be chosen such that it can reduce the vibration of the cylinder. For
example, f can be picked to be larger than the shedding frequency to avoid the occurrence of
resonance. The feedback gain G is set to be the following. Let T'=1/f and

Altn) =) v @Wiltn) = wiltn — T))% + (vi(tn) = vi(tn — T))2. (5.31)

Then at t = 0 we set G = Uy,. When the feedback is turned on, after one period T we set
G(t) = G(tn) + Atn) fort, <t <tnpyy: =T+t (5.32)

if the free stream velocity remains the same. Otherwise reset G to be the free stream velocity.
The purpose is to let the feedback increase the amplitude automatically until the flow is locked
in a periodic solution with the period 7. In this case the cylinder will be oscillated at a desirable




frequency. The numerical simulations of the closed-loop design are carried out. The simulations
are done in multiple phases. [The selected frequency (or forced frequency) is f = 0.25.] The
natural frequency (without the control) is about 0.21. In phase 1, Uy, = 1 and Re = 100, and in

phase 2, U, = 5 and Re = 500. In phase 3, Uy, = 1 and Re = 100, which are the same values
as in phase 1.

Phase Lock-in Feedback Control
: controlier Frequency checking

Amp‘;tudo update

Flow field simulations:
U=1 for 0<t<30
U=5 for 30<t<50
U=1 for 50<t<60

Figure 2: Phase Lock-in Feedback

6 Outline of Simulation Results

A sequence of numerical simulations have been obtained. The simulations consists of the flow
behaviors (1) without control; (2) with open-loop control; (3) with closed-loop control. We here
only provide some results of the simulations (Fig.3-6).
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